Prevention and Epidemiology miR-21 Inhibition Reduces Liver Fibrosis and Prevents Tumor Development by Inducing Apoptosis of CD24þ Progenitor Cells

نویسندگان

  • Jing Zhang
  • Jingjing Jiao
  • Silvia Cermelli
  • Kyle Muir
  • Kwang Hwa Jung
  • Ruhai Zou
  • Asif Rashid
  • Mihai Gagea
  • Sonya Zabludoff
  • Raghu Kalluri
  • Laura Beretta
چکیده

miR-21 is upregulated in hepatocellular carcinoma and intrahepatic cholangiocarcinoma, where it is associated with poor prognosis. Here, we offer preclinical evidence that miR-21 offers a therapeutic and chemopreventive target in these liver cancers. In mice with hepatic deletion of Pten, anti-miR-21 treatment reduced liver tumor growth and prevented tumor development. These effects were accompanied with a decrease in liver fibrosis and a concomitant reduction of CD24þ liver progenitor cells and S100A4þ cancer-associated stromal cells. Notch2 inhibition also occurred in tumors following anti-miR21 treatment. We further showed that miR-21 is necessary for the survival of CD24þ progenitor cells, a cellular phenotype mediated by Notch2, osteopontin, and integrin av. Our results identify miR-21 as a key regulator of tumor-initiating cell survival, malignant development, and growth in liver cancer, highlighting the role of CD24þ cells in the expansion of S100A4þ cancer-associated stromal cells and associated liver fibrosis. Cancer Res; 75(9); 1–9. 2015 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-21 Inhibition Reduces Liver Fibrosis and Prevents Tumor Development by Inducing Apoptosis of CD24+ Progenitor Cells.

miR-21 is upregulated in hepatocellular carcinoma and intrahepatic cholangiocarcinoma, where it is associated with poor prognosis. Here, we offer preclinical evidence that miR-21 offers a therapeutic and chemopreventive target in these liver cancers. In mice with hepatic deletion of Pten, anti-miR-21 treatment reduced liver tumor growth and prevented tumor development. These effects were accomp...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway

microRNA-29b (miR-29b) is known to be associated with TGF-β-mediated fibrosis, but the mechanistic action of miR-29b in liver fibrosis remains unclear and is warranted for investigation. We found that miR-29b was significantly downregulated in human and mice fibrotic liver tissues and in primary activated HSCs. miR-29b downregulation was directly mediated by Smad3 through binding to the promote...

متن کامل

Role of Kallistatin Treatment in Aging and Cancer by Modulating miR-34a and miR-21 Expression

Kallistatin is an endogenous protein that regulates differential signaling pathways and a wide spectrum of biological activities via its two structural elements: an active site and a heparin-binding domain. Kallistatin via its heparin-binding site inhibits vascular inflammation and oxidative stress by antagonizing TNF-α-induced NADPH oxidase activity, NF-κB activation, and inflammatory gene exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015